2-21 小概括:人工神物经网绕逼近股票标价3

分享到:
locoy • 2019-05-24 10:55 来源:原创 EG0

  import tensorflow as tf

  import numpy as np

  import matplotlib.pyplot as plt

  date =np.linspace(1,15,15)

  endPrice =np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08])

  beginPrice =np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])

  print(date)

  plt.figure()

  for i in range(0,15):

  # 1 柱状图

  dateOne=np.zeros([2])

  dateOne[0] = i;

  dateOne[1]= i;

  priceOne =np.zeros([2])

  priceOne[0] = beginPrice[i]

  priceOne[1]= endPrice[i]

  if endPrice[i]>beginPrice[i]:

  plt.plot(dateOne,priceOne,'r',lw=8)

  else:

  plt.plot(dateOne,priceOne,'g',lw=8)

  plt.show()

  # A(15*1)*w1(1*10)+b1(1*10)=B(15*10)

  # B(15*10)*w2(10*1)+b2(15*1)=C(15*1)

  # 1 A B C

  dateNormal=np.zeros([15,1])

  priceNormal =np.zeros([15,1])

  for i in range(0,15):

  dateNormal =i/14.0;

  priceNormal =endPrice[i]/3000.0;

  x =tf.placeholder(tf.float32,[None,1])# N行1列的

  y=tf.placeholder(tf.float32,[None,1])

  # B

  w1=tf.Variable(tf.random_uniform([1,10],0,1))

  b1 =tf.Variable(tf.zeros([1,10]))

  wb1 =tf.matmul(x,w1)+b1

  layer1 =tf.nn.relu(wb1) # 鼓励函数

本文来源前瞻网,转载请注明来源!(图片来源互联网,版权归原作者所有)

p23q0

分享:
标签: